Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Pers Ubiquitous Comput ; : 1-17, 2020 Nov 16.
Article in English | MEDLINE | ID: covidwho-20231922

ABSTRACT

Internet of Things (IoT) and smart medical devices have improved the healthcare systems by enabling remote monitoring and screening of the patients' health conditions anywhere and anytime. Due to an unexpected and huge increasing in number of patients during coronavirus (novel COVID-19) pandemic, it is considerably indispensable to monitor patients' health condition continuously before any serious disorder or infection occur. According to transferring the huge volume of produced sensitive health data of patients who do not want their private medical information to be revealed, dealing with security issues of IoT data as a major concern and a challenging problem has remained yet. Encountering this challenge, in this paper, a remote health monitoring model that applies a lightweight block encryption method for provisioning security for health and medical data in cloud-based IoT environment is presented. In this model, the patients' health statuses are determined via predicting critical situations through data mining methods for analyzing their biological data sensed by smart medical IoT devices in which a lightweight secure block encryption technique is used to ensure the patients' sensitive data become protected. Lightweight block encryption methods have a crucial effective influence on this sort of systems due to the restricted resources in IoT platforms. Experimental outcomes show that K-star classification method achieves the best results among RF, MLP, SVM, and J48 classifiers, with accuracy of 95%, precision of 94.5%, recall of 93.5%, and f-score of 93.99%. Therefore, regarding the attained outcomes, the suggested model is successful in achieving an effective remote health monitoring model assisted by secure IoT data in cloud-based IoT platforms.

2.
AEU - International Journal of Electronics and Communications ; : 154723, 2023.
Article in English | ScienceDirect | ID: covidwho-2321722

ABSTRACT

Wireless body area networks (WBANs) are helpful for remote health monitoring, especially during the COVID-19 pandemic. Due to the limited batteries of bio-sensors, energy-efficient routing is vital to achieve load-balancing and prolong the network's lifetime. Although many routing techniques have been presented for WBANs, they were designed for an application, and their performance may be degraded in other applications. In this paper, an ensemble Metaheuristic-Driven Machine Learning Routing Protocol (MDML-RP) is introduced as an adaptive real-time remote health monitoring in WBANs. The motivation behind this technique is to utilize the superior route optimization solutions offered by metaheuristics and to integrate them with the real-time routing capability of machine learning. The proposed method involves two phases: offline model tuning and online routing. During the offline pre-processing step, a metaheuristic algorithm based on the whale optimization algorithm (WOA) is used to optimize routes across various WBAN configurations. By applying WOA for multiple WBANs, a comprehensive dataset is generated. This dataset is then used to train and test a machine learning regressor that is based on support vector regression (SVR). Next, the optimized MDML-RP model is applied as an adaptive real-time protocol, which can efficiently respond to just-in-time requests in new, previously unseen WBANs. Simulation results in various WBANs demonstrate the superiority of the MDML-RP model in terms of application-specific performance measures when compared with the existing heuristic, metaheuristic, and machine learning protocols. The findings indicate that the proposed MDML-RP model achieves noteworthy improvement rates across various performance metrics when compared to the existing techniques, with an average improvement of 42.3% for the network lifetime, 15.4% for reliability, 31.3% for path loss, and 31.7% for hot-spot temperature.

3.
Multimed Tools Appl ; 81(20): 28779-28798, 2022.
Article in English | MEDLINE | ID: covidwho-1899252

ABSTRACT

Since early 2020, Coronavirus Disease 2019 (COVID-19) has spread widely around the world. COVID-19 infects the lungs, leading to breathing difficulties. Early detection of COVID-19 is important for the prevention and treatment of pandemic. Numerous sources of medical images (e.g., Chest X-Rays (CXR), Computed Tomography (CT), and Magnetic Resonance Imaging (MRI)) are regarded as a desirable technique for diagnosing COVID-19 cases. Medical images of coronavirus patients show that the lungs are filled with sticky mucus that prevents them from inhaling. Today, Artificial Intelligence (AI) based algorithms have made a significant shift in the computer aided diagnosis due to their effective feature extraction capabilities. In this survey, a complete and systematic review of the application of Machine Learning (ML) methods for the detection of COVID-19 is presented, focused on works that used medical images. We aimed to evaluate various ML-based techniques in detecting COVID-19 using medical imaging. A total of 26 papers were extracted from ACM, ScienceDirect, Springerlink, Tech Science Press, and IEEExplore. Five different ML categories to review these mechanisms are considered, which are supervised learning-based, deep learning-based, active learning-based, transfer learning-based, and evolutionary learning-based mechanisms. A number of articles are investigated in each group. Also, some directions for further research are discussed to improve the detection of COVID-19 using ML techniques in the future. In most articles, deep learning is used as the ML method. Also, most of the researchers used CXR images to diagnose COVID-19. Most articles reported accuracy of the models to evaluate model performance. The accuracy of the studied models ranged from 0.84 to 0.99. The studies demonstrated the current status of AI techniques in using AI potentials in the fight against COVID-19.

4.
Multimed Tools Appl ; 81(20): 28799-28800, 2022.
Article in English | MEDLINE | ID: covidwho-1894657

ABSTRACT

[This corrects the article DOI: 10.1007/s11042-022-12952-7.].

5.
Mathematics ; 9(24):3151, 2021.
Article in English | MDPI | ID: covidwho-1554967

ABSTRACT

The suspension of institutions around the world in early 2020 due to the COVID-19 virus did not stop the learning process. E-learning concepts and digital technologies enable students to learn from a safe distance while continuing their educational pursuits. Currently, the Internet of Things (IoT) is one of the most rapidly increasing technologies in today’s digital world;and e-learning is one of the most powerful learning methods available. In today’s world, smart devices and new technologies assist teachers in concentrating on new models of student learning while avoiding time wastage. By examining the characteristics of the Internet of Things and the challenges that exist in the field of e-learning, the potential functions, benefits, and advancements of utilizing the Internet of Things in online education are identified and discussed. This article examines the existing and future condition of the Internet of Things world as it pertains to the topic of education and sophisticated capabilities available through the Internet of Things that enable the application of e-learning after an architecture has been designed. Students’pulse rates, brain waves, and skin resistance are measured in real time by a collection of IoT sensors, including cameras, microphones, and wearable gadgets. By utilizing the proposed architecture, universities can change their distance learning tactics to maximize resources and boost efficiency without changing their overall academic activities. According to the study’s findings, e-learning has a favorable and statistically significant impact on students’flexibility, learning experience, educational productivity, and overall quality of education.

6.
Mathematics ; 9(23):3012, 2021.
Article in English | MDPI | ID: covidwho-1542650

ABSTRACT

In deploying the Internet of Things (IoT) and Internet of Medical Things (IoMT)-based applications and infrastructures, the researchers faced many sensors and their output’s values, which have transferred between service requesters and servers. Some case studies addressed the different methods and technologies, including machine learning algorithms, deep learning accelerators, Processing-In-Memory (PIM), and neuromorphic computing (NC) approaches to support the data processing complexity and communication between IoMT nodes. With inspiring human brain structure, some researchers tackled the challenges of rising IoT- and IoMT-based applications and neural structures’simulation. A defective device has destructive effects on the performance and cost of the applications, and their detection is challenging for a communication infrastructure with many devices. We inspired astrocyte cells to map the flow (AFM) of the Internet of Medical Things onto mesh network processing elements (PEs), and detect the defective devices based on a phagocytosis model. This study focuses on an astrocyte’s cholesterol distribution into neurons and presents an algorithm that utilizes its pattern to distribute IoMT’s dataflow and detect the defective devices. We researched Alzheimer’s symptoms to understand astrocyte and phagocytosis functions against the disease and employ the vaccination COVID-19 dataset to define a set of task graphs. The study improves total runtime and energy by approximately 60.85% and 52.38% after implementing AFM, compared with before astrocyte-flow mapping, which helps IoMT’s infrastructure developers to provide healthcare services to the requesters with minimal cost and high accuracy.

7.
Stud Health Technol Inform ; 279: 26-33, 2021 May 07.
Article in English | MEDLINE | ID: covidwho-1219396

ABSTRACT

BACKGROUND: Social networks are a good source for monitoring public health during the outbreak of COVID-19, these networks play an important role in identifying useful information. OBJECTIVES: This study aims to draw a comparison of the public's reaction in Twitter among the countries of West Asia (a.k.a Middle East) and North Africa in order to make an understanding of their response regarding the same global threat. METHODS: 766,630 tweets in four languages (Arabic, English French, and Farsi) tweeted in March 2020, were investigated. RESULTS: The results indicate that the only common theme among all languages is "government responsibilities (political)" which indicates the importance of this subject for all nations. CONCLUSION: Although nations react similarly in some aspects, they respond differently in others and therefore, policy localization is a vital step in confronting problems such as COVID-19 pandemic.


Subject(s)
COVID-19 , Social Media , Asia , Data Mining , Humans , Language , Middle East , Pandemics , SARS-CoV-2
8.
NPJ Digit Med ; 4(1): 29, 2021 Feb 18.
Article in English | MEDLINE | ID: covidwho-1091450

ABSTRACT

Coronavirus disease 2019 (Covid-19) is highly contagious with limited treatment options. Early and accurate diagnosis of Covid-19 is crucial in reducing the spread of the disease and its accompanied mortality. Currently, detection by reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard of outpatient and inpatient detection of Covid-19. RT-PCR is a rapid method; however, its accuracy in detection is only ~70-75%. Another approved strategy is computed tomography (CT) imaging. CT imaging has a much higher sensitivity of ~80-98%, but similar accuracy of 70%. To enhance the accuracy of CT imaging detection, we developed an open-source framework, CovidCTNet, composed of a set of deep learning algorithms that accurately differentiates Covid-19 from community-acquired pneumonia (CAP) and other lung diseases. CovidCTNet increases the accuracy of CT imaging detection to 95% compared to radiologists (70%). CovidCTNet is designed to work with heterogeneous and small sample sizes independent of the CT imaging hardware. To facilitate the detection of Covid-19 globally and assist radiologists and physicians in the screening process, we are releasing all algorithms and model parameter details as open-source. Open-source sharing of CovidCTNet enables developers to rapidly improve and optimize services while preserving user privacy and data ownership.

SELECTION OF CITATIONS
SEARCH DETAIL